HTN Problem Spaces: Structure, Algorithms, Termination

Ron Alford, Vikas Shivashankar, Ugur Kuter, and Dana Nau

July 21st, 2012
Unsolvable problems

HTN planning is semi-decidable.
- If your planner always returns if the problem is solvable, then there exist unsolvable problems for which it will never return.

Why care about unsolvable problems?
- Debugging/developing a domain
- Plan may not exist (Problem: make me a millionaire)
- Techniques that require failure:
 - NDP: uses a deterministic planner for FOND domains
 - Verification tasks
Classical Planning: \(D = (S, O, \gamma) \), \(P = (D, s_0, G) \)

A classical planning problem consists of:

- A domain, \(D \), with:
 - \(S \): A finite set of states
 - \(O \): A finite set of actions
 - \(\gamma : S \times O \rightarrow S \): A partial function to transition between states
- \(s_0 \): An initial state
- \(G \): A set of goal states
- An action \(a \) is executable in a state if \(\gamma(s, a) \) is defined.
- A sequence of actions \(\langle a_1, \ldots, a_n \rangle \) is executable in a state if the actions are executable in turn.
 - \(\gamma(s_0, a_1) = s_1 \)
 - \(\gamma(s_1, a_2) = s_2 \)
 - \(\ldots \)
 - \(\gamma(s_{n-1}, a_n) = s_n \)
- Objective: Find a plan (an executable sequence) that take us to a goal state.
HTN Planning: $D = (S, C, O, M, \gamma), \ P = (D, s_0, tn_0)$

All about the process, not the goal.

- Same S, O, γ, and s_0.
- An initial task network, tn_0, which is a DAG of tasks to accomplish:
 - Edges represent ordering constraints
 - Nodes either labelled with action names from O (say, \{drink, write\})
 - Or non-primitive with labels from C (say, \{work\})

- M, a set of methods to decompose non-primitive tasks
HTN Planning: $D = (S, C, O, M, \gamma)$, $P = (D, s_0, t_n_0)$

Example domain and decomposition

- A method is a non-primitive name paired with a task network.

Method: $work$

- We decompose a task by replacing its node in the network with its method’s network.
HTN Planning: $D = (S, C, O, M, \gamma)$, $P = (D, s_0, tn_0)$

Primitive task networks:

- Two states:
 - thirsty, \negthirsty

- Two actions:
 - $\gamma(s, \text{drink}) = \neg$thirsty
 - $\gamma(s, \text{write}) = \text{thirsty}$

- All names are actions \Rightarrow network is primitive
- It is executable in a state if there exists a consistent total order (sequence) which is executable.
 - Four possible orderings
 - All executable in both thirsty and \negthirsty
 - Could end in either state.

- Objective: Decompose initial network to a primitive task network which is executable in s_0.
Decomposition spaces for HTN planning

Decomposition as a graph

- Decomposition: Choose some non-primitive task and some method to decompose it
- Choices form a graph of task networks reachable via decomposition.
- Call this the *decomposition space* of a problem.
- Plan by searching graph (not always finite)
- Used by UMCP (Erol 94), Landmark-aware HTN planner (Elkawkagy 2011)
Decomposition spaces for HTN planning

Finiteness: ≤ 1-stratification

- A domain is ≤ 1-stratifiable if we can stratify its task names such that:
 - $(t, tn) \in M$ and $|tn| > 1 \Rightarrow$ every task in tn is on a lower stratum (acyclic decomposition).
 - $(t, tn) \in M$ and $|tn| = 1 \Rightarrow tn$’s task is on an equal or lower stratum (trivially recursive decomposition).
- Existence of a ≤ 1-stratification implies decomposition either:
 - Replaces task with a single task (no change in size)
 - Replaces task with tasks from lower strata.

Method: work

```
work
  drink
  write
```
Decomposition spaces for HTN planning

Finiteness: \leq_1-stratification

- A domain is \leq_1-stratifiable if we can stratify its task names such that:
 - $(t, tn) \in M$ and $|tn| > 1 \Rightarrow$ every task in tn is on a lower stratum (acyclic decomposition).
 - $(t, tn) \in M$ and $|tn| = 1 \Rightarrow$ tn's task is on an equal or lower stratum (trivially recursive decomposition).
- Existence of a \leq_1-stratification implies decomposition either:
 - Replaces task with a single task (no change in size)
 - Replaces task with tasks from lower strata.

Method: $work^i$

Constraints:

$$j < i, \ k < i, \ i < i$$
Decomposition spaces for HTN planning

Finiteness: \leq_1-stratification

- A domain is \leq_1-stratifiable if we can stratify its task names such that:
 - $(t, tn) \in M$ and $|tn| > 1 \Rightarrow$ every task in tn is on a lower stratum (acyclic decomposition).
 - $(t, tn) \in M$ and $|tn| = 1 \Rightarrow$ tn’s task is on an equal or lower stratum (trivially recursive decomposition).
- Existence of a \leq_1-stratification implies decomposition either:
 - Replaces task with a single task (no change in size)
 - Replaces task with tasks from lower strata.

Method: $work^i$

Constraints:

- $j < i$, $k < i$, $i = i$
Decomposition spaces for HTN planning

≤ 1-stratification implications

- Exists ≤ 1-stratification \Rightarrow finite decomposition space (task networks reachable by decomposition)
- No ≤ 1-stratification \Rightarrow infinite decomposition space
- Dealing with trivial recursion
 - Check for loops during decomposition
 - Compile it away
Progression spaces for HTN planning

For an HTN problem $P = (D, s_0, tn_0)$, if t is a task with no predecessors in tn_0, there are two ways to progress it:

- **If** t is non-primitive:
 - Let tn' be a decomposition of t in tn_0
 - Then (D, s_0, tn') is a progression of P.

- **If** t is primitive ($t \in O$) and executable, then:
 - Execute t: $\gamma(s_0, t) = s_1$
 - Remove it from tn_0: $tn' = tn_0 \setminus \{t\}$
 - Then (D, s_1, tn') is a progression of P.

- Progression interleaves decomposition and finding a total order.

- Choices form a graph of problems reachable by progression.
Progression spaces

Example
Progression spaces

Example

\begin{tikzpicture}
 \node[red,draw] (work) at (0,2) {work};
 \node[red,draw] (thirsty) at (0,0) {thirsty};
 \node[blue,draw] (drink) at (-1,-1) {drink};
 \node[blue,draw] (write) at (-1,-2) {write};
 \node[red,draw] (work2) at (0,-2) {work};
 \draw[->] (work) -- (thirsty);
 \draw[->] (drink) -- (work);
 \draw[->] (write) -- (work2);
\end{tikzpicture}
Progression spaces

Example

- drink
- write
- work
- thirsty
- work
- thirsty
- write
- work
- ¬thirsty
Progression spaces

Example
Progression spaces

Example
Progression spaces

Example
Progression spaces for HTN planning

\leq_r-stratification

- A \leq_r-stratification of task names: For every method (t, tn),
 - All but the last task of tn must be on lower strata.
 - **Last task** on equal or lower stratum (tail recursion).

Method: work

```
Method: work

drink

work

write
```
Progression spaces for HTN planning

\(\leq_r \)-stratification

- A \(\leq_r \)-stratification of task names: For every method \((t, tn)\),
 - All but the last task of \(tn\) must be on lower strata.
 - **Last task** on equal or lower stratum (tail recursion).

Method: \(\text{work}^i\)

\[
\begin{align*}
\text{work}^i & \quad \text{drink}^j \\
\text{work}^i & \quad \text{write}^k
\end{align*}
\]

Constraints: \(j < i, k < i, i \leq i\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>work</td>
</tr>
<tr>
<td>1</td>
<td>drink, write</td>
</tr>
</tbody>
</table>
Progression spaces for HTN planning

≤ᵣ-stratification implications

- Includes all ≤₁-stratifiable problems
- Exists ≤ᵣ-stratification ⇒
 - Can only decompose to a fixed depth before executing actions.
 - Finite progression space (problems reachable by progression)
- No ≤ᵣ-stratification: Progression space might be infinite:
 - γ structure can prune problems from progression space
- Most (all?) SHOP and SHOP2 domains are ≤ᵣ-stratifiable
 - Can guarantee termination by adding a loop check
Total Order Partition spaces

Motivating Example: Morning coffee

- Brew as much coffee in the morning as you need throughout the day.
- Easy to express as HTN
 - Difficult in classical planning (artificially limit coffee?)
 - Not \leq_r-stratifiable ('work' now in the middle)

New actions:

- $\gamma(s, \text{brew}) = s$
- $\gamma(s, \text{twiddle}) = s$
- $\gamma(s, \text{publish}) = \emptyset$

Method: work

Initial problem:

- Brew
- Work
- Thirsty
- Publish
- Drink
- Write
Total Order Partition spaces

Serialization

- Plan by splitting into smaller parts
- If there is a total order over chunks of the task network:
 - Serialize network into smaller chunks
 - End state of one is the start state of the next.
 - If last chunk solvable, then the whole problem is solvable
- When no total order, use progression
- Call this the Total Order Progression (TOP) space
Total Order Partition spaces

Example

work \rightarrow publish

thirsty
Total Order Partition spaces

Example

work → publish

thirsty

work

thirsty
Total Order Partition spaces

Example

work → publish

thirsty

work

thirsty

twiddle

thirsty
Total Order Partition spaces

Example
Total Order Partition spaces

Example

```
work  →  publish
thirsty

publish
thirsty

work
thirsty

twiddle
thirsty

brew  →  work
thirsty

drink
write
```
Total Order Partition spaces

Example
Total Order Partition spaces

Example
Total Order Partition spaces

Example

```
work → publish
thirsty

publish
thirsty

work
thirsty

twiddle
thirsty

brew
thirsty

work
thirsty

brew
thirsty

write

drink

write

drink
```

¬

¬
Total Order Partition spaces

Example

```
work -> publish
  thirsty

work
  thirsty

work
  thirsty

publish
  thirsty

¬thirsty

brew
  work
  write

brew
  thirsty

drink

write

¬thirsty

drink

write

thirsty

thirsty

thirsty

thirsty

thirsty
```
Total Order Partition spaces
\(\leq_r \)-ordered

- For finiteness, need to consider the structure of networks in the problem.
- Let \(\langle tn_1, \ldots, tn_n \rangle \) be the totally ordered chunks of a network \(tn \). \(tn \) is \(\leq_r \)-ordered if every \(tn_i \) is either:
 - singular (only one task)
 - \(\leq_r \)-stratifiable
- Initial task network and all methods \(\leq_r \)-ordered \(\Rightarrow \) problem is \(\leq_r \)-ordered
- Checks that we never introduce a partial order that can’t be solved via progression.
Total Order Partition spaces
\(\leq_r \)-ordered implications

- Includes \(\leq_r \)-stratifiable problems
- Includes totally ordered HTN planning.
 - Every finite-state finite-task domain that SHOP can handle.
 - SHOP may not terminate on these
 - Possible to develop a planner that does.
- Heuristic search may be fun:
 - Loops
 - Sequential dependencies between children
Contributions:

- Characterized three different ways to search for HTN problems (fourth in paper)
- Two ways well implemented, but now we know when we can get them to terminate.
 - Stratification checks may be helpful for domain authors
- A new way to search, which terminates on more problems.

Future work:

- Heuristic search for TOP spaces
- Use \leq_r-stratification to find automatic bounds for translation based planning