On the Feasibility of Planning Graph Style Heuristics for HTN Planning

Ron Alford¹ Vikas Shivashankar² Ugur Kuter³ Dana Nau²

¹ASEE Postdoc
U.S. Naval Research Lab
Washington, DC, USA
ronwalf@volus.net

²Dept. of Computer Science
University of Maryland
College Park, MD, USA
(svikas|nau)@cs.umd.edu

³Smart Information Flow Technologies
Minneapolis, MN, USA
ukuter@sift.net

24th International Conference on Automated Planning and Scheduling
June 24th, 2014
Hierarchical Task Network (HTN) Planning

- HTN planning is the problem of decomposing an initial task to accomplish into a sequence of executable steps.
- Example applications of HTN planning:
 - Encoding control knowledge for planning
 - Agent planning in robotics and simulation: ARTUE (2010), Johnny (2012)
 - Planning and mission generation for games: KILLZONE 2, Elder Scrolls, Armed Assault
 - Representing and planning with processes and hierarchies
 - Composing web services (Sirin, 2004; Tang 2013; others)
 - Program configuration (Soltani, 2012)
- More expressive than classical planning
 - Can express undecidable problems
- How does this expressivity affect what HTN heuristics can (and cannot) exist?
HTN Heuristics (Motivation)

Domain independent heuristics in search:

- Problem spaces in planning are intractably large to search
- A heuristic underestimates the distance to nearest solution, or we pretend it does
- Usually based on solving a relaxed, ground (propositional) version of the problem
 - Relax the semantics of what it means to be a solution
 - Relaxation should take low-order polynomial time to solve
 - Solution to full problem implies solution to relaxed problem (but not vice versa)
- There is currently only one (state-independent) HTN heuristic
HTN Heuristics (Motivation)

Domain independent heuristics in search:

- Problem spaces in planning are intractably large to search
- A heuristic underestimates the distance to nearest solution, or we pretend it does
- Usually based on solving a relaxed, ground (propositional) version of the problem
 - Relax the semantics of what it means to be a solution
 - Relaxation should take low-order polynomial time to solve
 - Solution to full problem implies solution to relaxed problem (but not vice versa)
- There is currently only one (state-independent) HTN heuristic
- There are only two HTN heuristics
 - Bercher et. al. SoCS 2014
The purpose of HTN planning is to complete a task. Tasks are either
- **Primitive**, which corresponds to some concrete action we know how to perform
 - E.g: \texttt{walk(room, hall)}, or \texttt{drink(coffee)}
- **Non-primitive**, which is an abstract task. E.g. \texttt{travel(home, L.A.)}
- Must recursively decompose non-primitive tasks until we get primitive tasks we know how to execute directly
- We are given a set of methods, which are recipes on how to accomplish abstract tasks. E.g., to travel from \texttt{home} to \texttt{L.A.}, we might

```
travel(h, L.A.)

buy_ticket
travel(h, a_1)
fly(a_1, a_2)
travel(a_2, L.A.)

travel(h, stop_1)
bus(stop_1, a_1)
taxi(a_2, L.A.)
```
Propositional HTN Planning: $D = (O, M), P = (D, s_0, tn_0)$

Every HTN problem P contains an *initial state* s_0, which is a collection of propositions. *Actions* in our domain change the state. Actions have:

- A name (the task)
- A precondition (logical formula over the state)
 - Condition must hold for the action to be executed
- An effect on the state
 - A set of propositions to add
 - A set of propositions to delete

State:

\{thirsty, tired\}

Operator: sleep

pre = tired \& \neg thirsty
eff = \{\neg tired\}

Operator: drink

pre = true
eff = \{\neg thirsty\}
HTN Planning: \(D = (O, M), P = (D, s_0, t_{n_0}) \)

- An initial task network, \(t_{n_0} \), which is a labeled DAG of tasks to accomplish:
 - Edges represent ordering constraints
 - Nodes are labeled with tasks, which are either:
 - Primitive tasks (i.e., action names from \(O \): \{\text{drink}, \text{write}\})
 - Non-primitive tasks (say, \{\text{work}\})

- \(M \), a set of methods to decompose non-primitive tasks
Methods and Decomposition

- A method \((t, tn)\) is a non-primitive task \(t\) paired with a network \(tn\).

Method:

- We decompose a task network by replacing a node in the network with a corresponding method’s network.
Primitive Task Networks

- Two states:
 - "thirsty", "¬thirsty"
- Two actions:
 - \(\forall s \gamma (s, write) = "thirsty" \)
 - \(\forall s \gamma (s, drink) = "¬thirsty" \)

- All names are actions \(\Rightarrow \) network is *primitive*
- It is *executable* in a state if there exists a consistent total order (sequence) which is executable.
- Objective: Decompose initial network to a primitive task network that is executable in \(s_0 \).
Classical (Propositional STRIPS) Planning

Differences between HTN and classical planning:

- \(P = (O, s_0, G) \)
- No methods and no initial task network.
- Objective: Find a plan (any executable sequence) that take us to a goal state.
 - No restriction (other than executability) on when planner can insert an action
- PSPACE-complete for propositional problems
Delete-Free STRIPS

Planning in propositional delete-free STRIPS (Bylander, 1994)

- $\text{STRIPS}^{+\text{pre} +\text{eff}}$ (FF Relaxed GraphPlan)
 - All operators have positive preconditions and effects; positive goal
 - Poly-time to find a plan: just apply operators until a fixed point is reached
 - NP-hard to find optimal plan
 - Basis for many influential classical planning heuristics

- $\text{STRIPS}^{+\text{eff}}$
 - All operators have positive effects. Arbitrary goal and precondition
 - NP-complete to find a plan (same for optimality)
Planning in delete-free propositional HTN domains:
- HTN^+_pre: Positive preconditions and effects
- HTN^+_eff: Positive effects
- Decidability and complexity previously unknown
- If either of these were in P, we could use them as the base of a heuristic
Almost all delete-free HTN planning is NP-hard, even the case where:

- Actions have at most 1 positive precondition and effect
- Methods are acyclic, regular (1 non-primitive task), and totally-ordered
Encoding CNF-SAT in HTN

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For each variable \(V_i\):

- Two propositions: \(V_i, nV_i\)
- Two methods corresponding to truth values of \(V_i\):
 - Method: \(set_{V_i} \rightarrow assert_{V_i} \rightarrow set_{V_{i+1}}\)
 - Method: \(set_{V_i} \rightarrow assert_{nV_i} \rightarrow set_{V_{i+1}}\)

Method choice determines which of \(V_i, nV_i\) is set.

For last variable, replace last task with \(check_{E_1}\), instead

\[
\begin{align*}
V_1 & \quad V_2 & \quad V_3 & \quad V_4 \\
nV_1 & \quad nV_2 & \quad nV_3 & \quad nV_4
\end{align*}
\]
Encoding CNF-SAT in HTN $^{1+\text{pre}}_{1+\text{eff}}$

CNF-SAT: $(V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)$

For each variable V_i:

- Two propositions: V_i, nV_i
- Two methods corresponding to truth values of V_i

Method:

- $set_V_i \rightarrow assert_V_i \rightarrow set_V_{i+1}$

Method:

- $set_V_i \rightarrow assert_nV_i \rightarrow set_V_{i+1}$

- Method choice determines which of V_i, nV_i is set.

- For last variable, replace last task with check E_1, instead

$V_1 \quad V_2 \quad V_3 \quad V_4$

$nV_1 \quad nV_2 \quad nV_3 \quad nV_4$
Encoding CNF-SAT in HTN

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For each variable \(V_i\):

- Two propositions: \(V_i, nV_i\)
- Two methods corresponding to truth values of \(V_i\):

 Method:

 \[
 \text{set}_V_i \rightarrow \text{assert}_V_i \rightarrow \text{set}_V_{i+1}
 \]

 Method:

 \[
 \text{set}_V_i \rightarrow \text{assert}_nV_i \rightarrow \text{set}_V_{i+1}
 \]

 Method choice determines which of \(V_i, nV_i\) is set.

 For last variable, replace last task with \(\text{check}_E_1\), instead

\[
\begin{align*}
V_1 & \quad V_2 & \quad V_3 & \quad V_4 \\
\rightarrow (nV_1) & \quad nV_2 & \quad nV_3 & \quad nV_4
\end{align*}
\]
Encoding CNF-SAT in HTN

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For each variable \(V_i\):

- Two propositions: \(V_i, \neg V_i\)
- Two methods corresponding to truth values of \(V_i\):

 Method:

 \[
 \text{set}_V_i \rightarrow \text{assert}_V_i \rightarrow \text{set}_{V_i+1}
 \]

 Method:

 \[
 \text{set}_V_i \rightarrow \text{assert}\neg V_i \rightarrow \text{set}_{V_i+1}
 \]

 Method choice determines which of \(V_i, \neg V_i\) is set.

 For last variable, replace last task with \text{check}_E_1, instead

\[
\begin{array}{cccc}
V_1 & V_2 & V_3 & V_4 \\
nV_1 & nV_2 & nV_3 & nV_4
\end{array}
\]
Encoding CNF-SAT in HTN\(^{1+pre}\)\(^{1+eff}\)

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For each variable \(V_i\):
- Two propositions: \(V_i, nV_i\)
- Two methods corresponding to truth values of \(V_i\):
 - Method: \(set_V_i \rightarrow assert_V_i \rightarrow set_V_{i+1}\)
 - Method: \(set_V_i \rightarrow assert_nV_i \rightarrow set_V_{i+1}\)
 - Method choice determines which of \(V_i, nV_i\) is set.
- For last variable, replace last task with \(check_E_1\), instead.
Encoding CNF-SAT in HTN\(^{1+pre}\)\(^{1+eff}\)

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For each variable \(V_i\):

- Two propositions: \(V_i, nV_i\)
- Two methods corresponding to truth values of \(V_i\):
 - Method:
 - set\(_V_i\) \rightarrow assert\(_V_i\) \rightarrow set\(_V_i+1\)
 - Method:
 - set\(_V_i\) \rightarrow assert\(_nV_i\) \rightarrow set\(_V_i+1\)
 - Method choice determines which of \(V_i, nV_i\) is set.
- For last variable, replace last task with check\(_E_1\), instead

\[V_1 \quad V_2 \quad V_3 \quad V_4\]
\[nV_1 \quad nV_2 \quad nV_3 \quad nV_4\]
Delete-Free HTN planning is NP-hard

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For disjunctive clause \(E_i\), methods test whether at least one term is true:

Method:
\[
\text{check } E_1 \rightarrow \text{check } V_1 \rightarrow \text{check } E_2
\]

Method:
\[
\text{check } E_1 \rightarrow \text{check } nV_3 \rightarrow \text{check } E_2
\]

Method:
\[
\text{check } E_1 \rightarrow \text{check } V_4 \rightarrow \text{check } E_2
\]
Delete-Free HTN planning is NP-hard

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3) \)

For disjunctive clause \(E_i \), methods test whether at least one term is true:

Method: \(\text{check } E_1 \rightarrow \text{check } V_1 \rightarrow \text{check } E_2 \)

Method: \(\text{check } E_1 \rightarrow \text{check } nV_3 \rightarrow \text{check } E_2 \)

Method: \(\text{check } E_1 \rightarrow \text{check } V_4 \rightarrow \text{check } E_2 \)
Delete-Free HTN planning is NP-hard

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For disjunctive clause \(E_i\), methods test whether at least one term is true:

Method:
- \(\text{check}_E_1\) → \(\text{check}_V_1\) → \(\text{check}_E_2\)

Method:
- \(\text{check}_E_1\) → \(\text{check}_nV_3\) → \(\text{check}_E_2\)

Method:
- \(\text{check}_E_1\) → \(\text{check}_V_4\) → \(\text{check}_E_2\)
Delete-Free HTN planning is NP-hard

CNF-SAT: \((V_1 \lor \neg V_3 \lor V_4) \land (V_2 \lor V_3 \lor \neg V_4) \land (\neg V_1 \lor \neg V_2 \lor \neg V_3)\)

For disjunctive clause \(E_i\), methods test whether at least one term is true:

Method:
- \(\text{check } E_1\) → \(\text{check } V_1\) → \(\text{check } E_2\)
- \(\text{check } E_1\) → \(\text{check } nV_3\) → \(\text{check } E_2\)
- \(\text{check } E_1\) → \(\text{check } V_4\) → \(\text{check } E_2\)
Even highly restricted delete-free HTN planning is NP-hard

Now we show that every solvable delete-free HTN problem has a polynomial-size witness
Even highly restricted delete-free HTN planning is NP-hard
Now we show that every solvable delete-free HTN problem has a polynomial-size witness
History of decompositions forms a tree where the leaves are the current task network (Geier and Bercher, 2011)

- If that task network is executable, this tree is a proof that the problem is solvable
- Even if no actions change the state, min tree size may still be exponential
 - To show $HTN_{+\text{eff}} \in \text{NP}$, we need a polynomial size witness
A Polynomial-Size Witness for $\text{HTN}_{+\text{eff}}$

Given a solution:

- In delete-free planning, only as many actions as there are propositions can change the state.
- Prune tree to the minimal tree that contains those actions.
- Construct a poly-size table to show the pruned tree has an executable expansion.
- Use a pumping lemma to shorten the tree to polynomial height.
- Poly height, poly width tree and a poly-size table $\implies \text{HTN}_{+\text{eff}} \in \text{NP}$
A Polynomial-Size Witness for $\text{HTN}_{+\text{eff}}$

Given a solution:

- In delete-free planning, only as many actions as there are propositions can change the state
- Prune tree to the minimal tree that contains those actions
- Construct a poly-size table to show the pruned tree has an executable expansion
- Use a pumping lemma to shorten the tree to polynomial height
- Poly height, poly width tree and a poly-size table $\Rightarrow \text{HTN}_{+\text{eff}} \in \text{NP}$
A Polynomial-Size Witness for $\text{HTN}_{+\text{eff}}$

Given a solution:

- In delete-free planning, only as many actions as there are propositions can change the state
- Prune tree to the minimal tree that contains those actions
- Construct a poly-size table to show the pruned tree has an executable expansion
- Use a pumping lemma to shorten the tree to polynomial height
- Poly height, poly width tree and a poly-size table $\Rightarrow \text{HTN}_{+\text{eff}} \in \text{NP}$
Delete-Free HTN planning is NP-complete

- \(\text{HTN}^{+\text{pre} + \text{eff}} \) has a poly-size witness and can encode SAT, so it is NP-complete.
- Just ignoring the deletes and negative preconditions is not enough to create an HTN heuristic - we must further relax the semantics.
Delete-Free HTN planning is NP-complete

- $\text{HTN}^{+\text{pre}+\text{eff}}$ has a poly-size witness and can encode SAT, so it is NP-complete.
- Just ignoring the deletes and negative preconditions is not enough to create an HTN heuristic - we must further relax the semantics.
Delete-Free Task-Insertion HTN Planning

- Task-Insertion HTN (TIHTN) Planning (Geier & Bercher, 2011):
 - Allows insertion of arbitrary operators into task network
- TIHTN$^{+\text{pre} + \text{eff}}$ planning is poly-time:
 - Insert operators until you reach a fixpoint
 - Test to see if tasks are executable in the fixpoint state (similar to testing if a CFG is empty).
- Poly-time \implies TIHTN$^{+\text{pre} + \text{eff}}$ is a candidate for an HTN heuristic.
- We can’t reduce SAT to TIHTN$^{+\text{pre} + \text{eff}}$:
Delete-Free Task-Insertion HTN Planning

- Task-Insertion HTN (TIHTN) Planning (Geier & Bercher, 2011):
 - Allows insertion of arbitrary operators into task network
 - $\text{TIHTN}^{+\text{pre}}_{\text{eff}}$ planning is poly-time:
 - Insert operators until you reach a fixpoint
 - Test to see if tasks are executable in the fixpoint state (similar to testing if a CFG is empty).
- Poly-time \implies $\text{TIHTN}^{+\text{pre}}_{\text{eff}}$ is a candidate for an HTN heuristic.
- We can’t reduce SAT to $\text{TIHTN}^{+\text{pre}}_{\text{eff}}$:

\[
\begin{align*}
V_1 & \quad V_2 & \quad V_3 & \quad V_4 \\
\rightarrow nV_1 & \quad nV_2 & \quad nV_3 & \quad nV_4 \\
V_1 & \quad V_2 & \quad V_3 & \quad V_4 \\
nV_1 & \quad nV_2 & \quad nV_3 & \quad nV_4
\end{align*}
\]
Delete-Free Task-Insertion HTN Planning

- Task-Insertion HTN (TIHTN) Planning (Geier & Bercher, 2011):
 - Allows insertion of arbitrary operators into task network
- \(\text{TIHTN}^{+\text{pre}}_{+\text{eff}} \) planning is poly-time:
 - Insert operators until you reach a fixpoint
 - Test to see if tasks are executable in the fixpoint state (similar to testing if a CFG is empty).
- Poly-time \(\implies \) \(\text{TIHTN}^{+\text{pre}}_{+\text{eff}} \) is a candidate for an HTN heuristic.
- We can’t reduce SAT to \(\text{TIHTN}^{+\text{pre}}_{+\text{eff}} \):
Delete-Free Task-Insertion HTN Planning

- Task-Insertion HTN (TIHTN) Planning (Geier & Bercher, 2011):
 - Allows insertion of arbitrary operators into task network
- $\text{TIHTN}^{+\text{pre}+\text{eff}}$ planning is poly-time:
 - Insert operators until you reach a fixpoint
 - Test to see if tasks are executable in the fixpoint state (similar to testing if a CFG is empty).
- Poly-time \implies $\text{TIHTN}^{+\text{pre}+\text{eff}}$ is a candidate for an HTN heuristic.
- We can’t reduce SAT to $\text{TIHTN}^{+\text{pre}+\text{eff}}$.

```
V_1 \quad V_2 \quad V_3 \quad V_4
\quad nV_1 \quad nV_2 \quad nV_3 \quad nV_4
```

```
V_1 \quad V_2 \quad V_3 \quad V_4
\quad nV_1 \quad nV_2 \quad nV_3 \quad nV_4
```
Delete-Free Task-Insertion HTN Planning

- Task-Insertion HTN (TIHTN) Planning (Geier & Bercher, 2011):
 - Allows insertion of arbitrary operators into task network
- $\text{TIHTN}^{+\text{pre} \, +\text{eff}}$ planning is poly-time:
 - Insert operators until you reach a fixpoint
 - Test to see if tasks are executable in the fixpoint state (similar to testing if a CFG is empty).
- Poly-time $\implies \text{TIHTN}^{+\text{pre} \, +\text{eff}}$ is a candidate for an HTN heuristic.
- We can’t reduce SAT to $\text{TIHTN}^{+\text{pre} \, +\text{eff}}$.
Delete-Free Task-Insertion HTN Planning

- Task-Insertion HTN (TIHTN) Planning (Geier & Bercher, 2011):
 - Allows insertion of arbitrary operators into task network
- $\text{TIHTN}^{+\text{pre} +\text{eff}}$ planning is poly-time:
 - Insert operators until you reach a fixpoint
 - Test to see if tasks are executable in the fixpoint state (similar to testing if a CFG is empty).
- Poly-time \implies $\text{TIHTN}^{+\text{pre} +\text{eff}}$ is a candidate for an HTN heuristic.
- We can’t reduce SAT to $\text{TIHTN}^{+\text{pre} +\text{eff}}$.
Delete-free HTN planning is NP-complete!

- Heuristics based on delete-free HTNs must further relax semantics
- TIHTN_{+pre, +eff} (HTN planning with task insertion) is one candidate
- Need to explore the trade-offs between complexity & fidelity